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Q. How to enhance system testing? Our Approach Testing black-box CPS with

e.g. Reusability, Explanation, Learning of formal model + Verification
Theoretical gurantee,

Our Toolkit: FalCAuUN (on Jupyter with Kotlin Kernel)

Can testlng be faster’) ij Jupyter ATS1-step-5 Last Checkpoint: last month (
Why tests passed? File Edit View Run Kernel Settings Help Trusted
B + X OO » m C » Code v JupyterLab [] Kotlin C

Is it reliable?

val outputLength = rawSignals[i].continuousOutputSignal.timestamps.size
val velocityValues = rawSignals[i].continuousOutputSignal.values.map {triple -> triple[0]}
val datasetVelocity = mapOf(
"time" to rawSignals[i].continuousOutputSignal.timestamps,
"output" to velocityValues,
"group" to List(outputLength) { "velocity" }
)
bunch.addPlot(letsPlot(datasetVelocity) +
geomPath(showLegend = true) {x = "time"; y = "output"; color = "group"} +
labs(title = "Output to falsify" + verifier.cexProperty[il), @0, 800 *x i + 200, 1000
println("maximum value of velocity: ${velocityValues.max()}")
println("minimum value of velocity: ${velocityValues.min()}")

Black-Box Checking for CPS

maximum value of velocity: 120.21325006771389
Black-Box Checking [Peled et al., PSTV & FORTE’99]

minimum value of velocity: 0.0

Input to falsify: [] ( output(3) < 120.000000 )
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Difficult Part!!
e Typically by random test
e Hard to find corner cases or

something useful to falsify ¢

Robustness-guided equivalence test ... »scc2o  Gounterexample synthesis via Model Checking of strengthened formulas

[Shijubo, Waga, Suenaga, RV’21]

Idea: Find evidence of .# # .4/’ using inputs w/ low robustness
l.e. use inputs leading “near dangerous” status

Idea: Model checking of “related” specification can find useful evidence of # # '

Fact: Counterexample ¢ of model checking progresses learning if ./ does not violate ¢ with o
Robustness

Assumption: M F ¢ xp(M(u), ) +p(AM' (1), ) Observations:
Robustness of . can get negative

for some inputs

- Model checking is typically faster than equivalence testing

« ¢ obtained by model checking is often useful
Fact: /' F ¢ for learning since it is related to @
Robustness of .# " is always positive
(Guaranteed by model checking)

For any p,v € LTL, we have (uV v) — (uAv).
For any n € LTL, we have Qu — LOu.
For any n € LTL, we have UOu — QU wu.

_ For any n € LTL, we have OUp — Upu.
Approach: Syntactically strengthen LTL formulas 5 ror 4ny 1 € LTL and for any indices i,§ € N L

and conduct model checking with it have O jyp > O jy -
6. For any u,v € LTL, we have (uld v) — (Cu AT

- Also the case for the formulas “related” to @

St Lo o =

Heuristic: Find u s.t. /(1) # A (u)
focusing on u making . less robust B/ B/A B

Eventually y s ...

Notes on formal guarantee Future directions

Assumption: Target system can be modeled with a Mealy machine ./

» Testing of Python classes, particularly (R)NNs

- If v input, eq. test eventually try it, then we can find any counterexample in the limit * Better illustration of falsifying executions

. y rt of hyperproperti .g., to testr tn nd fairn
- If we know the number of states of .#, we can stop eq. test with correctness guarantee Support of hyperproperties, e.g., 1o test robustness and fairness

(based on conformance testing, such as W-method [Chow, TSE’ 78]) * Support numeric inputs (w/ symbolic automata)
- Alternatively, we can stop with probably approximately correct (PAC) guarantee [Angluin, '87] * Extension for stochastic systems
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