FalCAuN - CPS Testing with Automata Learning

Masaki Waga - Kyoto University

Q. How to enhance system testing? Our Approach Testing black-box CPS with

e.g. Reusability, Explanation, Learning of formal model + Verification
Theoretical gurantee,

Our Toolkit: FalCAuUN (on Jupyter with Kotlin Kernel)

Can testlng be faster’) ij Jupyter ATS1-step-5 Last Checkpoint: last month (
Why tests passed? File Edit View Run Kernel Settings Help Trusted
B + X OO » m C » Code v JupyterLab [] Kotlin C

Is it reliable?

val outputLength = rawSignals[i].continuousOutputSignal.timestamps.size
val velocityValues = rawSignals[i].continuousOutputSignal.values.map {triple -> triple[0]}
val datasetVelocity = mapOf(
"time" to rawSignals[i].continuousOutputSignal.timestamps,
"output" to velocityValues,
"group" to List(outputLength) { "velocity" }
)
bunch.addPlot(letsPlot(datasetVelocity) +
geomPath(showLegend = true) {x = "time"; y = "output"; color = "group"} +
labs(title = "Output to falsify" + verifier.cexProperty[il), @0, 800 *x i + 200, 1000
println("maximum value of velocity: ${velocityValues.max()}")
println("minimum value of velocity: ${velocityValues.min()}")

Black-Box Checking for CPS

maximum value of velocity: 120.21325006771389
Black-Box Checking [Peled et al., PSTV & FORTE’99]

minimum value of velocity: 0.0

Input to falsify: [] (output(3) < 120.000000)

100
Formal Verification -
. . g. 50
y Automata Learning with Model Checking .

et S f] b T T T T T T T T T T
S f*;'-i’ P 0 2 4 6 8 10 12 14 16 16

time
Output to falsify[] (output(3) < 120.000000)
100
2
5 50
o
0
0 2 4 6 8 10 12 14 16 18
time
y / ("s0 VgSaaTaaamnb / anas
M ¥ -Spec. =
Found o s.t Active Automata v
o Learning, e.g. L* | - M(0) # M'(0)
%(6) # % (O-) l bb / aaac l'bu aaaa
M': 5 85% ol
[% A a/aaac \aa/aaad \ab/aaad aa / aaadjab / aaad
r N\ |Verif "against Vs :
Find evidence of X 4 J QDJ rT C W/ ;) r »Y Free as in Freedom
es w/ input o
MM e N
iNot Found v X w/ input o l X
Likely ¢ B (¢ seems satisfied) (@ is violated) aad

Difficult Part!!
e Typically by random test
e Hard to find corner cases or

something useful to falsify ¢

Robustness-guided equivalence test ... »scc2o Gounterexample synthesis via Model Checking of strengthened formulas

[Shijubo, Waga, Suenaga, RV’21]

Idea: Find evidence of .# # .4/’ using inputs w/ low robustness
l.e. use inputs leading “near dangerous” status

Idea: Model checking of “related” specification can find useful evidence of # # '

Fact: Counterexample ¢ of model checking progresses learning if ./ does not violate ¢ with o
Robustness

Assumption: M F ¢ xp(M(u),) +p(AM' (1),) Observations:
Robustness of . can get negative

for some inputs

- Model checking is typically faster than equivalence testing

« ¢ obtained by model checking is often useful
Fact: /' F ¢ for learning since it is related to @
Robustness of .# " is always positive
(Guaranteed by model checking)

For any p,v € LTL, we have (uV v) — (uAv).
For any n € LTL, we have Qu — LOu.
For any n € LTL, we have UOu — QU wu.

_ For any n € LTL, we have OUp — Upu.
Approach: Syntactically strengthen LTL formulas 5 ror 4ny 1 € LTL and for any indices i,§ € N L

and conduct model checking with it have O jyp > O jy -
6. For any u,v € LTL, we have (uld v) — (Cu AT

- Also the case for the formulas “related” to @

St Lo o =

Heuristic: Find u s.t. /(1) # A (u)
focusing on u making . less robust B/ B/A B

Eventually y s ...

Notes on formal guarantee Future directions

Assumption: Target system can be modeled with a Mealy machine ./

» Testing of Python classes, particularly (R)NNs

- If v input, eq. test eventually try it, then we can find any counterexample in the limit * Better illustration of falsifying executions

. y rt of hyperproperti .g., to testr tn nd fairn
- If we know the number of states of .#, we can stop eq. test with correctness guarantee Support of hyperproperties, e.g., 1o test robustness and fairness

(based on conformance testing, such as W-method [Chow, TSE’ 78]) * Support numeric inputs (w/ symbolic automata)
- Alternatively, we can stop with probably approximately correct (PAC) guarantee [Angluin, '87] * Extension for stochastic systems

This work is partially supported by JST ACT-X Grant No. JPMJAX200U, JST PRESTO Grant No. JPMJPR22CA, JST ERATO HASUO Metamathematics for
Systems Design Project (No. JPMJER1603), JST CREST Grant Number JPMJCR2012, and JSPS KAKENHI Grant Number 15KT0012, 18J22498,
19H04084, and 22K17873.

