Model-bounded monitoring of hybrid systems

Masaki Waga¹, Étienne André², Ichiro Hasuo³

Kyoto University¹, Université de Lorraine², National Institute of Informatics³

18 May 2021, MT-CPS 2021

This work is partially supported by JST ACT-X Grant No. JPMJAX200U, by JST ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), by JSPS Grant-in-Aid No. 18J22498, and by ANR-NRF ProMiS (ANR-19-CE25-0015).
Safety Critical CPSs

Self-driving car crash in Arizona: Red light runner hits Waymo van

Tesla Model 3: Autopilot engaged during fatal crash

Monitoring

Specification: No \((v > 120)\)
Monitoring

Specification: No \((v > 120)\)
Monitoring with Sampling

Specification: No \((v > 120)\)
Monitoring with Sampling

Specification: No \((v > 120)\)
Monitoring with Sampling

Specification: No \((v > 120)\)
Signal Interpolation

Specification: No \((\nu > 120)\)
Signal Interpolation

Specification: No \((v > 120) \)
Signal Interpolation

Specification: No \((v > 120)\)
Signal Interpolation

Specification: No \((\nu > 120)\)
Signal Interpolation

Specification: No \((v > 120)\)
Specification: No \((v > 120) \)

Impossible because
\[\left| \frac{dv}{dt} \right| < K \]
Model-Bounded Monitoring

Specification: No \((v > 120) \)

Knowledge (bounding model)

\[\left| \frac{dv}{dt} \right| < K \]

[Graph showing velocity over time with a bounding line at 120]
Model-Bounded Monitoring

Specification: No \((v > 120)\)

Knowledge
(bounding model)
\[\left| \frac{dv}{dt} \right| < K \]

Feasible execution with
\[\left| \frac{dv}{dt} \right| < K \]
Model-Bounded Monitoring

Specification: No \((v > 120) \)

Knowledge (bounding model)
\[
\left| \frac{dv}{dt} \right| < K
\]
Model-Bounded Monitoring

Specification: No \((v > 120) \)

Knowledge (bounding model)

\[
\left| \frac{dv}{dt} \right| < K
\]

Feasible execution with

\[
\left| \frac{dv}{dt} \right| < K
\]
Q. How to Represent Bounding Model?

A. Linear Hybrid Automata
Contributions

• Proposed model-bounded monitoring
 Bounding model (knowledge): linear HAs \mathcal{M}

• Formalized with monitored language $L_{\text{mon}}(\mathcal{M})$
 $L_{\text{mon}}(\mathcal{M})$: possible discrete observations of \mathcal{M}

• Algorithms + implementations
 Idea: bounded-time reachability
 Experiment \rightarrow effectively monitorable
Model-Bounded Monitoring

Given

- Bounding model in LHA M
- Safety Specification φ
- Discrete Log w

Decide if the actual behavior might violate the spec.

Our Contribution

| $\frac{dv}{dt}$ | $< K$ |

No $(v > 120)$
Model-Bounded Monitoring

Given

- Bounding model in LHA M
- Safety Specification φ
- Discrete Log w

Decide if the actual behavior might violate the spec.
Monitored Language \(L_{\text{mon}} \)

Our Contribution

Combine cont. exec. of \(\mathcal{M} \) and disc. obs. of \(w \)

\[
L_{\text{mon}}(\mathcal{M}) = \{ \text{Discr. Obs } w \mid \}
\]
Monitored Language L_{mon}

Our Contribution

Combine cont. exec. of M and disc. obs. of w

$$L_{mon}(M) = \{ \text{Discr. Obs } w \mid \exists \text{ exec. } \sigma \text{ of } M \text{ s.t.}$$

\[t \]

\[y \]

\[120 \]
Monitored Language L_{mon}

Our Contribution

Combine cont. exec. of M and disc. obs. of w

\[L_{mon}(M) = \{ \text{Discr. Obs } w \mid \exists \text{ exec. } \sigma \text{ of } M \text{ s.t. } \]
\[w \text{ is a sample of } \sigma \} \]
Workflow of Model-bounded Monitoring

1. Construct an LHA $M_{\neg \varphi}$ from bounding model M and spec. φ

 Idea: Product of LHAs

2. Check if $w \in L_{\text{mon}}(M_{\neg \varphi})$

 Idea: Bounded-time reachability analysis
Algorithm: Bounded-time Reachability

Feasible execution with \[
\left| \frac{dv}{dt} \right| < K
\]
Algorithm: Bounded-time Reachability

Feasible execution with \[\left| \frac{dv}{dt} \right| < K \]

bounded
Implementations

Approach 1: Utilize existing model-checker (PHAVerLite)

Pros: Highly-optimized reachability analysis impl.

Approach 2: Implement dedicated monitor (HAMoni)

Pros: Best performance in theory
Environment of Experiments

- Used 3 benchmarks on adaptive cruise controller (ACC) + 1 robot navigation (NAV) benchmark

 - **ACC**: Cars should not be too close (or no physical contact)
 - **NAV**: Do not enter an unsafe region

- Amazon EC2 c4.large instance / Ubuntu 18.04 LTS (64 bit)
 - 2.9 GHz Intel Xeon E5-2666 v3, 2 vCPUs, 3.75 GiB RAM
Experiment Results
Changing Observation Length

Dedicated impl. ≈ 10x faster

> 5000 samples / sec.
Experiment Results
Changing Model Dimension

![Graph showing execution time vs dimension for PHAVerLite and HAMoni with different values of ε.]

- PHAVerLite, len. 100, ε = 2.0
- PHAVerLite, len. 100, ε = 0.9
- HAMoni, len. 100, ε = 2.0
- HAMoni, len. 100, ε = 0.9

Existing tool was faster for dim. > 6

Future work: further optimization
Experiment Results

False Alarms

False alarm for “very safe” exec. → sampling is coarse
Conclusions

• Proposed model-bounded monitoring
 Bounding model (knowledge): linear HAs \(\mathcal{M} \)

• Formalized with monitored language \(L_{mon}(\mathcal{M}) \)
 \(L_{mon}(\mathcal{M}) \): possible discrete observations of \(\mathcal{M} \)

• Algorithms + implementations
 Idea: bounded-time reachability
 Experiment \(\rightarrow \) effectively monitorable